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Randomization in Characterizing the
Subsurface
By Youzuo Lin, Daniel O’Malley, Velimir V. Vesselinov, George D. Guthrie, and David
Coblentz

Current methods for characterizing Earth’s subsurface, such as standard inverse techniques, are
not sufficiently accurate to meet the needs of modern applications in the fields of energy
exploration, environmental management, and global security. While increasing the quantity of field
measurements and robustness of the applied data-/model-analysis methods can improve
accuracy, such approaches can be computationally impractical for large data sets and complex
site conditions. Therefore, there is a need to develop economically-feasible and robust
computational methods while maintaining accuracy. For example, in-field drilling for geothermal
operations may yield high failure rates, resulting in unacceptably high costs; errors and/or large
uncertainties in the estimated subsurface characteristics are the main impediment to the
successful siting of an in-field well. This problem is not uniquely geothermal. Accurate
characterization of uncertain subsurface properties is also critical for monitoring storage of carbon
dioxide, estimating pathways of subsurface contaminant transport, and supervising ground-based
nuclear-explosion tests.

We have developed various methods to characterize the subsurface, including efficient
computational strategies to identify subsurface permeability given a set of hydraulic heads, as
shown in Figure 1, and a data-driven subsurface geological feature detection approach using
seismic measurements, as shown in Figure 2. A major challenge for many subsurface applications
is the large number of observations and high feature dimensionality.

Randomized matrix algorithms—which aim to construct a low-rank approximation of an input
matrix—have received a great deal of attention in recent years. The low-rank approximation, often
called a matrix “sketch,” is usually the product of two smaller matrices, which yields a good
approximation that represents the original output’s essential information. Therefore, one can
employ a sketching system as a surrogate for the original data to compute quantities of interest.
We have employed randomization techniques to solve various large-scale computational
problems. Here we provide examples to demonstrate two major applications in solving real-world
subsurface problems.
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Figure 1. Schematic representation of a typical hydrologic inverse problem where observations of hydraulic heads at

wells are used to estimate aquifer permeability. Image credit: Youzuo Lin.

Randomized Subsurface Permeability Estimation
A porous medium’s permeability is a physical quantity needed to predict flow and transport of
fluids and contaminants in the subsurface. The permeability’s estimation is often posed as a
regularized inverse problem

where  is the forward operator mapping from the permeability to the pressure (called “hydraulic
head” in hydrology parlance),  is a recorded hydraulic head dataset,  is a vector of
permeabilities,  measures the data misfit, and  is the regularization term.

The solution to  can be obtained as

where  is the Jacobian matrix of the forward modeling operator , defined as

One may obtain  and  by solving the linear system
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However, solving  can be both prohibitively expensive and memory demanding. To combat this
problem, we developed a novel randomized technique that enables an efficient computational
method [1].

Our approach aims to construct a sketching matrix, the elements of which are drawn randomly
from a Gaussian distribution. We then replace the data  with  and the forward  with .
Therefore, the linear system in  and  can be substituted correspondingly with

and

 and  and  and  seem almost identical, except for the introduction of matrix . However,
a simple computational cost analysis can reveal the significant impacts of the randomized matrix.
Assume that the number of model parameters is ; the number of observations is , which yields
the size of the Jacobian matrix  and the covariance matrix is . We also
denote the rank of the sketching matrix by , and . The drift matrix , where  is
small. The dimension of the original system matrix in  is  , while the dimension
of the randomized system in  is  — much smaller than the original system.
Therefore, the computational cost of solving  is significantly lower than that of solving ; this is
the power of randomization in solving traditional inverse problems, as illustrated in [1]. The
developed methods are available in the open source code Mads.

Subsurface Geological Feature Detection Using
Randomized Data­Driven Methods
Seismic waves are more sensitive to the acoustic/elastic impedance of the subsurface than other
geophysical measurements (see Figure 2). Hence, seismic exploration has been widely used to
infer heterogeneities in media impedance, which indicate geologic structures.
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Figure 2. Diagram of the data-driven procedure to learn geologic features from seismic measurements. Image

courtesy of [2] and [3].

Analyzing and interpreting seismic measurements for identifying prospective geological features
is challenging. The difficulties arise from the processing of large amounts of seismic data and the
incorporation of subjective human factors. Different geologic features play different roles in
characterizing subsurface structure. In particular, identifying geological fault zones is essential to
many subsurface energy applications. In carbon sequestration, potential leaks of stored carbon
dioxide can create geologic faults, so knowing fault locations is necessary to monitor carbon
dioxide storage. We have developed a novel data-driven geological feature detection method and
successfully applied it to seismic measurements [2, 3], as illustrated in Figure 2. Both historical
and simulated seismic data are fed into learning algorithms. A detection function  is the
output of the training process, where  represents the pre-stack seismic measurements. The
function creates a link from the seismic measurements to the corresponding geological features.
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Suppose one has  historical feature vectors , which are from seismic
measurements and , and the associated labels  which in this
example denote the location of the dipping angle of geologic faults. The kernel ridge regression
(KRR) is utilized to learn the mapping function [2, 3]. We directly state the dual problem of KRR
without derivation

where  is a kernel function and  is a regularization parameter. The problem in  has a
closed-form solution 

where  is a  identity matrix. Finally, for any unknown data , the prediction made by
KRR can be obtained by

However, the direct utilization KRR prediction in  is computationally expensive, because of the
inversion of the large-scale matrix in . We employ the Nyström method—a randomized kernel
matrix approximation tool—to the geologic detection task, aiming to solve large-scale problems
using modest computational resources.

The Nyström method computes a low-rank approximation  in  time. Here, 
 is user-specified; larger values of  lead to better approximation but incur higher

computational costs. We can compute the tall-and-skinny matrix  as follows. First, we
sample  items from  uniformly at random without replacement; let the resulting set be 

. Subsequently, we construct a matrix  as  for  and ; 
let   contain the rows of  indexed by . Figure 3 illustrates the approximation. Finally,
we compute the low-rank approximation .

Figure 3. Illustration of the Nyström approximation. Image courtesy of [2] and [3].

With the low-rank approximation obtained via the Nyström method, we can efficiently calculate an
approximated solution
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where the latter equality follows from the Sherman-Morrison-Woodbury matrix identity. It is
worthwhile mentioning that the  matrix of  in  has been replaced by the matrix of 

, which is much smaller. This significantly reduces the computational costs. More
details and results can be found in [2, 3].
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